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Abstract: Background: Human infections associated with skin and mucosal surfaces, mainly in tropical 
and sub-tropical parts of the world. During the last decade, there have been an increasing numbers of 
cases of fungal infections in immunocompromised patients, coupled with an increase in the number of 
incidences of drug resistance and toxicity to anti fungal agents. Hence, there is a dire need for safe, po-
tent and affordable new antifungal drugs for the efficient management of candidal infections with mini-
mum or no side effects. 

Introduction: Candidiasis represents a critical problem to human health and a serious concern world-
wide. Due to the development of drug resistance, there is a need for new antifungal agents. Therefore, 
we reviewed the different medicinal plants as sources of novel anticandidal drugs. 

Methods: The comprehensive and detailed literature on medicinal plants was carried out using different 
databases, such as Google Scholar, PubMed, and Science Direct and all the relevant information from 
the articles were analyzed and included. 

Results: Relevant Publications up to the end of November 2018, reporting anticandidal activity of me-
dicinal plants has been included in the present review. In the present study, we have reviewed in the 
light of SAR and mechanisms of action of those plants whose extracts or phytomolecules are active 
against candida strains. 

Conclusion: This article reviewed natural anticandidal drugs of plant origin and also summarized the 
potent antifungal bioactivity against fungal strains. Besides, mechanism of action of these potent active 
plant molecules was also explored for a comparative study. We concluded that the studied active plant 
molecules exhibit potential antifungal activity against resistant fungal strains.  

Keywords: Candida albicans, Mode of actions, Natural products, Thymol, Antifungal resistance, VVC. 

1. INTRODUCTION 

Candidiasis is an opportunistic fungal infection in hu-
mans caused by Candida species. Candida is a genus of 
yeasts of which more than 20 species are reported to cause 
infection in humans. The most common pathogenic Candida 
species are C. albicans, C. glabrata, C. guillermondii, C. 
krusei, C. parapsilosis, C. pseudotropicalis, and C. tropi-
calis [1, 2]. Candida normally resides in the moist upper 
parts of the skin and membranes without causing infection. 
However, the overgrowth of these organisms can cause dis-
eases [3]. Candidiasis most frequently occurs in immuno-
compromised HIV and cancer patients and overuse of antibi-
otics and the use of immunosuppressive agents is also the 
reason for the development of resistance [4]. Candidiasis of 
the mouth is called thrush the symptoms of which include 
white patches or plaques on the tongue and other moist  
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membranes [5]. Candida species are opportunistic polymor-
phic fungi. A resident of the normal vaginal microbiota, 
Candida, is the leading causative agent of vulvo-vaginal 
candidiasis (VVC) and presents the major quality of life is-
sues for women worldwide [6]. It is estimated that almost 
75% of all females of childbearing age are afflicted by VVC 
at least once in their lifetime [7] and approximately 5–8% 
(approximately 150 million worldwide) suffer from recurrent 
VVC (RVVC) [8]. Candidemia refers to the presence of 
fungi in blood. Presence of fungi in blood stream (Invasive 
candidiasis) causes a major issue in patients. Once the fungi 
enter into the bloodstream, it can spread to other parts of the 
body and cause widespread infections. The symptoms of 
invasive candidiasis are not specific. If the infection spreads 
to parts of the body such as kidneys, liver, bones, muscles, 
joints, spleen, or eyes, additional symptoms may develop 
and may vary depending on the site of infection. Antifungal 
drugs such as Amphotericin B and Fluconazole introduced in 
the late 90s, have till date been were the only available anti-
fungal agents for the treatment of severe fungal infections; 
Furthermore, the emergence of the AIDS, modern patient 
management technologies and therapies such as solid-organ 
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transplants, bone marrow and the more aggressive use of 
chemotherapy have resulted in a rapidly expanding number 
of patients highly susceptible to mycotic infections with the 
increased incidence of fungal infections and development of 
resistance to antifungal drugs. The rates of resistance of 
pathogenic microorganisms to antifungal agents are increas-
ing with alarming frequency. The emergence of fungal resis-
tance to antifungal agents has consequently become a 
worldwide concern [9, 10].  

In the past decade research on medicinal and aromatic 
plants has attracted global attention. There is strong evidence 
to suggest the promising potential of medicinal and aromatic 
plants used in various traditional, complementary and alter-
native systems of medicine for the welfare of mankind. Me-
dicinal plants are rich in a wide variety of secondary metabo-
lites such as tannins, terpenoids, alkaloids, flavonoids, etc., 
which have great in vitro and in vivo promising activity 
against diverse pathogens including bacteria, fungi and vi-
ruses. The anticandidal activity in plants can be attributed to 
the presence of some components such as allicin, thymol, 
carvacrol, cymene, cinnamaldehyde, pinene, linalool etc. In 
the current review, we have included plants responsible for 
anticandidal activity and have collated different modes of 
action of active components. 

2. MATERIALS AND METHODS 

The comprehensive and detailed literature on medicinal 
plants was carried out using different databases, such as 
Google Scholar (http://scholar.google. com), PubMed 
(http://www.ncbi.nlm.nih.gov/ pubmed), and Science Direct 
(http://www. sciencedirect.com) which were used to find the 
literature on anticandidal activity. Suitable Publications up to 
the end of November 2018 reporting anticandidal activity 
have been included in the present review. 

3. RESULTS 

3.1. Antifungal Activity 

Antifungal activity (MIC and MFC) of a compound is 
generally determined by in vitro Disc Diffusion and broth 
dilution assays. It is further evaluated by fungicidal kinetics, 
protein release, DNA/RNA release or ion leakage. More than 
100 papers that reported the antifungal activity of plant ex-
tract and constituents based on the in-vitro methods have 
been reviewed. Several papers, considered the significant 
activity of phytochemicals if the MIC values lie below 100 
mg/ml (this high concentration cannot be considered as sig-
nificant) for crude extract and moderate when it lies between 
100-625 mg/ml [11]. In the case of active constituent from 
plant sources, few authors reported MIC values in v/v [12] 
and remaining in w/v [13] and MIC ranges in between 
0.016µg/ml to 32 mg/ml. List of plants which is reported to 
have anticandidal activity, their biological source, parts used 
and minimum inhibitory concentration (MIC) against can-
dida strains are listed in Table 1. 

3.2. Active Constituent: Anticandidal Activity & Mode of 
Action 

Plants produce a variety of components with anticandidal 
activity, of which some are produced in response to me-

chanical injury with infection or due to microbial invasion 
[62]. Identification of the most active constituent from essen-
tial oil or plant extract is a cumbersome process because both 
extract as well as essential oils are complex mixture of mole-
cules [63] and the composition of active constituents may 
vary depending on the method of collection, harvesting, ex-
traction procedure and processing method [64]. Most studies 
have focused on the mechanism of action carried out in bac-
teria, while a few studies have studied the mode of action of 
fungi and moulds. Thus, we are providing an individual list 
of components that are active against fungi, thereby reveal-
ing their mechanism of action against strains. Table 2 and 
Fig. (1) enlisted the active constituents and their mode of 
action.  

3.2.1. Thymol 

Thymol (2-isopropyl-5-methylphenol) is monoterpene 
phenol present abundantly in plants belonging to the family 
Lamiaceae [65] (Monarda genera, Ocimum, Origanum, 
Satureja, Thymbra, and Thymus), and other families 
Apiaceae, Ranuncolaceae, Scrophulariaceae, and Verbena-
ceae families [65, 66]. 

Thymol is closely similar to carvacrol having a different 
position of hydroxyl group in a phenolic ring. The antimi-
crobial activity of thymol is not fully known but is believed 
to work by structural changes in the cytoplasmic membrane 
and interact with the intracellular targets [67]. Previous stud-
ies reveal that thymol interacts with the cell membrane and 
affects the cellular permeability at a concentration of 0.1% 
and is documented by the uptake of ethidium bromide [68], 
leakage of carboxyfluorescein, cellular ions [69] (18 µl of 
essential oil for S. aureus and 36 µl for P. aeruginosa to a 
culture of approximately 1x109 CFU/ml), and ATP and loss 
of membranous potential (IC50 value at 31.2) [65, 70]. 
Thymol interacts with the phospholipid by intercalating be-
tween the head group region of the bilipid layer [71]. The 
antimicrobial activity of thymol is ascribed to the presence 
of hydroxyl group, where lengthening of the chain by ester 
or ether increases the activity. Thymol interacts with the cell 
membrane, dissolves the phospholipid bilayer and lodges 
itself between the head group. Apart from interacting with 
the cell membrane phospholipid, thymol also interacts with 
the intracellular targets, which prevents cellular recovery 
after short term exposure [72]. Previous studies also reported 
that thymol disturbs the citrate pathway [73] and affects the 
enzymes involved in ATP production directly or indirectly 
and impairs the synthesis of ATP. Thymol’s interacellular 
interaction affects the energy generating pathways and thus 
prevents the cellular recovery after short term exposure [73]. 
The action of thymol against fungi is not studied much, but 
few studies explain the interaction with the cell envelope and 
intracellular targets. Thymol disrupted the cell membrane 
and impaired the ergosterol biosynthesis in candida strains 
(400-500 mg/L), consequently affecting the membrane 
symmetry and fluidity [74]. Contrary to this, one of the 
authors proposed that thymol works on the TOR signalling 
pathway and activates the pathway in yeast [75].  

3.2.2. Carvacrol 

Carvacrol or 2-methyl-5-(1-methylethyl)-phenol is a 
monoterpenoid biosynthesized from γ -terpinene through p-
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Table 1. List of plants reported to have anticandidal activity, their biological source, parts used and minimum inhibitory concen-

tration (MIC) against Candida strains. 

Plant Biological Source Part(s) Used Used Strain(s) Minimum Inhibitory 

Concentration (µg/ml) 

References 

Velvet leaf Abutilon theophrasti Leaf and stems C. albicans 90028 5.0  [14] 

Karrad Acacia nilotica Fruit, Leaves C. albicans ATCC 10231 9.5-39 [15] 

Yarrow Achillea millefolium L. Whole aerial part C. albicans ATCC 14053 

C. albicans (MTCC) 

0.19  

0.19  

[16] 

Chaff flower Achyranthes aspera Extract C. albicans ATCC 10231 780  [17] 

Aloe Aloe secundiflora Leaves C. albicans  8.1  [18] 

Aloe Aloe barbadensis  Roots and leaves C. albicans 
C. glabrata  
C. tropicalis 

1000  
1000  

200  

[19]  

Onion Allium cepa Bulb C. albicans (clicical iolates, 

n=18) 

C. glabrata (n=6) 
C. tropicalis (n=5) 

C. parapsilosis (n=1) 

62.5–16000 

62.5–32000 

62.5–32000 
62.5–32000 

62.5–32000 

[20] 

Garlic Allium Sativum Cloves C. albicans (n=18)  
C. glabrata (n=6) 

C. tropicalis (n=5) 

C. parapsilosis (n=1) 
C. Albicans (n=40) 

15.6–2000 
15.6–1000 

15.6–1000 

15.6–500  
MIC50 (32-80) 

MIC90 (64-128) 

[20] 
[21] 

Oriental garlic Allium tuberosum Aerial part extract C. albicans CBS-562 100-625  [22] 

Lesser alpinia Alpinia conchigera Rhizomes and stems C. albicans ATCC 10231 100-625  [23] 

Galangal Alpinia galanga Roots C. albicans LFO 1061 

C. utilis OUT 6020 

12.5  

12.5  

[24] 

Wild garlic Allium ursinum Extract and Volatile 
oils 

C. albicans (n=3)  
C. fusarium (n=3) 

C. glabrata (n=3)  

C. krusei (n=3)  

500-2000  
500-4000 

1000-4000  

500-4000  

[25] 

Monkey nut Anacardium humile Leaves C. albicans 10231 400  [26] 

Dill Anethum graveolens Seeds C. albicans ATCC 64550 

C. albicans 09 5304 
C. albicans 09 1502 

62.5  

62.5  
62.5  

[27] 

Axlewood Anogeissus latifolia Hydro-alcoholic 
after maceration 

with ether 

C. albicans (MTCC183) 7.28 [28] 

Desert date Balanites aegyptiaca Fruit C. albicans ATCC 90028 1000 [29] 

Paper mulberry Broussonetia papyrifera Bark and Root C. albicans 10231 10-25  [30] 

Buchenavia Buchenavia tomentosa Aqueous extract, 
Gallic Acid 

C. albicans ATCC 18804 
C. tropicalis ATCC 13803 

C. krusei ATCC 6258 
C. glabrata ATCC 90030 

C. parapsilosis ATCC 22019 
C. dubliniensis NCPF 3108 

12.5  
12.5  

0.78  

0.20  

6.25  

0.20  

[31] 

Rubber tree Calotropis procera Leaves C. albicans ATCC 10231 320-1280  [32] 

(Table 1) contd…. 
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Plant Biological Source Part(s) Used Used Strain(s) Minimum Inhibitory 

Concentration (µg/ml) 

References 

Papaya Carica Papaya Leaves and seeds C. albicans MTCC 227 15.62  [33] 

Ceylon cinnamon Cinnamomum verum Bark C. albicans MTCC 227 15.62  [33] 

- Cirsium sp. Aqueous extract C. albicans ATCC 10231 780-1560 [34] 

Key lime Citrus aurantifolia Essential oil  C. albicans PTCC 5027 -- [35] 

Coriander Coriandrum sativum Aerial part, leaves, 
Essential oil 

C. albicans CBS 562 15-125  [22] 

Lemon grass Cympopogon citratus Leaves, essential oil: 
Lemon Grass 

Mentha 

Eucalyptus 

C. albicans ATCC 10231 288  [36] 

Indian geranium Cympopogon Martini Aerial part extract 
Essential oil 

C. albicans CBS 562 63-250  [22, 37] 

Java citronella Cympogon winterlanus Aerial part, dried 
extract 

C. albicans CBS 562 125-1000  [22] 

Dorstenia Dorstenia manni Dried Extract twigs C. albicans ATCC 9002 64  [38] 

Longan Dimocarpus longan 
Lour 

Spray dried extract 

(Gallic Acid) 

C. krusei ATCC 6258 
C. parapsilosis ATCC 20019 

C. albicans ATCC 90028 

8000 

4000 
4000 

[39] 

Fish mint Houttuynia cordata Aerial part and un-
derground stem 

C. albicans ATCC 14053 
C. albicans (clinical isolate) 

C. kefyr ATCC 204093 

2080 
4160  

16660 

[40] 

Poison nut Jatropa Curcas Seeds C. albicans NIPRD 12500  [41] 

Apple mint Mentha suaveolens Leaves C. albicans  390-780  [42] 

Ligusticum Ligusticum mutellina L. Methanolic extract 
(Gallic, benzoic, 

caffeic, coumaric, 

and ferulic acids) 

C. albicans ATCC 10231 
C. parapsilosis ATCC 22019 

1250 
1250 

[43] 

- Limonium avei Methanolic extract C. albicans ATCC 10231 4000 [44] 

Radal Lomatia hirsuta Leaves C. albicans IMI 349010 8  [45] 

Great basil or 

Saint-Joseph's-wort 

Ocimum basilicum Whole aerial part C. albicans ATCC 

C. keyfer 
C. albicans (Clinical isolate) 

500  

562  
562  

[12] 

Camphor basil Ocimum kilimand-
scharicum 

Whole plant essential 
oil 

C. albicans ATCC 10231 
C. keyfer 

C. albicans (Clinical isolate) 

1330-33340  
1560-16670  

860-27780  

[46] 

Jamaican pepper Piper hispidum Leaves, fruit, root C. albicans 10231 62.5  [47] 

Phlomis Phlomis olivieri Whole Plant extract C. albicans (Clinical isolates) 100 000  [47] 

Cinquefoils Potentilla sp. Acetone and metha-
nol extract (Caffeic 

acid and ferulic acid) 

C. albicans ATCC 10231 780-1560  [48] 

Psammosilene Psammosilene tunicoides Root C. albicans SC 5314 
C. albicans Y0109 

4  
16  

[49] 

African nutmeg Pycnanthus angolensis Bark extract C. albicans (Clinical isolate, 

vulvo vaginal strain) 

25000  [50] 

(Table 1) contd…. 
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Plant Biological Source Part(s) Used Used Strain(s) Minimum Inhibitory 

Concentration (µg/ml) 

References 

Beach rose Rosa rugosa Methanolic extract 
(Protocatechuic, 

gallic and 

p-coumaric acids) 

C. albicans ATCC 10231 
C. parapsilosis ATCC 22019 

156  
156  

[51] 

Rosemary Rosmarinus officinalis Extract, herbal tea C. albicans (Clinical isolates) 250-2250  [52] 

Wing leaf soap-
berry 

Sapindus saponaria Fruits C. albicans (Clinical isolate) 310  [53] 

Satureja Satureja intermedia Leaves flower and 

stem 

C. albicans ATCC 13803 3400  [54] 

African tulip tree Spathodea campanulata Stem Bark C. albicans ATCC 10231 45000-50000  [55] 

Clove Syzygium aromaticum Leaves C. albicans (Clinical isolate) 150  [15] 

French tamarisk Tamarix gallica L. Methanolic extract C. kefyr, 
C. holmii, 

C. albicans 
C. sake 

C. glabrata 

2000 [56] 

Indian-almond Terminalia catappa Aerial Part and Stem 
barks  

C. albicans (Clinical isolates) 145-523  [57] 

Ivory Coast almond Terminalia ivorensis Aerial Part and Stem 
barks 

C. albicans (Clinical isolates) 35-54  [57] 

Madagascar al-

mond 

Terminalia mantaly Aerial Part and Stem 

barks 

C. albicans (Clinical isolates) 36.04-42.30  [57] 

African limba 
wood 

Terminalia superba Aerial Part and Stem 
barks 

C. albicans (Clinical isolates) 30.08-57.46  [57] 

Teucrium Teucrium arduini L. Ethanolic extract 
(Ferulic acid) 

C. albicans ATCC 10231 4000  [58] 

Breckland thyme Thymus serpyllum Aerial Part  C. albicans 1/1600 [59] 

Himalayan Thyme Thymus linearis Aerial Part C. albicans 1/3200 [59] 

Caraway Trachyspermum 
ammi 

Fruits, essential oil C. albicans ATCC 24433 500  [60] 

Fenugreek Trigonella foenum- 
graecum 

Seeds C. albicans MTCC 227 15.62  [33] 

Cassumunar ginger Zingiber montanum Rhizomes C. albicans ATCC 14053 
C. albicans MTCC 1637 

0.19  
0.19  

[61] 

 
Fig. (1). List of active constituents from plant sources. 
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Table 2. List of active constituents against candida strains and their modes of action. 

Plants Constituents Model Organism Measured MIC Mechanism 

C. albicans ATCC 10231  
C. tropicalis ATCC 201380 

C. albicans  

C. krusei  
C. tropicalis 

Thymol MIC values ranged from 
0.125 to 1 µg/ml. 

MIC: 39 µg/ml for C. albicans and 

C. krusei; MIC: 78 µg/ml for C. 
Tropicalis [111]. 

C. albicans SC 5314 MIC ranged from 64 µg/ml to 128 

µg/ml [112] 

C. albicans ATCC 11006 MIC: 350 µg/ml [113] 

C. albicans MIC: 125 µg/ml [114] 

C. albicans Treatment of 24-h-old C. albicans 
biofilms with thymol (0.06%) 

resulted in >80% inhibition [115]. 

C. albicans MTCC 227 MIC of thymol: 0.12 % (v/v)[116] 

Ocimum gratissimum 
Thymus vulgaris 

Trachyspermum ammi L. 
Satureja Montana 

Thymol 
 

C. albicans Thymol prevented biofilm forma-

tion at MIC 1 mg/ml and exhibited 
a MIC of 2 mg/ml against mature 

biofilm and was active at 0.5 

mg/ml concentration on planktonic 

cells [117]. 

Damage to the cell mem-
brane [67], disrupted the cell 

envelope, increased the 

membrane permeability, 

leakage of ions like potas-

sium, ATP [68], interaction 
with cell membrane and 

internal proteins, inhibited 

ergosterol biosynthesis and 

disturbed cell membrane 

integrity and fluidity [74]. 

Oreganum compactum 
origanum vulgare 

Carvacrol C. albicans ATCC 40042 

C. albicans ATCC 13803 
C. albicans ATCC 7648 

256 µg/ml 

256 µg/ml 
256 µg/ml [79] 

[79, 118] 

Disrupted the cytoplasmic 

membrane, loss of ions [67], 
increased the permeability 

[118] and fluidity of the 

membrane, changed the fatty 

acid composition and im-

paired the ergosterol biosyn-

thesis [13]. Interaction with 
the membrane proteins and 

periplasmic enzymes [72]. 

C. albicans (oropharyngeal 
strains) 

C. albicans (vaginal strains) 

C albicans (skin damaging 

strains) 

7.9 mg/ml [119] 
7.5 mg/ml 

7.2 mg/ml 

 

C. albicans ATCC 10231 
C. krusei ATCC 6258 

C. tropicalis ATCC 13803 

C. parapsilosis 9001 

C. parapsilosis 

0.64 mg/ml 
0.64 mg/ml 

0.64 mg/ml 

0.32 mg/ml 

0.32-0.64 mg/ml [109] 

Syzygium aromaticum 
Myristica fragrans 

Cinnamomum verum 
Ocimum basilicum 

Eugenol 
 

C. albicans isolates (n=38) 
Candida spp 

C. albicans (n=31) 

C. albicans FLC-S 

C. albicans FLC-R 

C. albicans ATCC 90028 

C. tropicalis FLC-S 
C. tropicalis FLC-R 

C. parapsilosis FLC-S 

C. parapsilosis FLC-R 

 

0.03–0.25% (v/v)[120] 
3200 µg/ml [121] 

625 µg/ml [122] 

475–500 µg/ml [80] 

490–500 µg/ml [80] 

0.1 µl/ml [123] 

475–500 µg /ml [80] 
490–500 µg /ml [80] 

490–500 µg /ml [80] 

475–500 µg /ml [80] 

 

Increased the membrane 
permeability, increased the 

transport of ions, and ATP 

out of the cell [87]. Inhibited 

the activity of enzymes i.e. 
inhibition of ATPase, His-

tidine decarboxylase, amy-

lase and protease [90], dis-

ruption of cell membrane and 

wall structure [89]. 

 

(Table 2) contd…. 
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Plants Constituents Model Organism Measured MIC Mechanism 

  C. glabrata FLC-S 

C. glabrata FLC-R 
C. krusei FLC-R 

C. dubliniensis FLC-R 

485–500 µg /ml [80] 

475–500 µg /ml [80] 
495–500 µg /ml [124] 

0.44-0.88 mg/ml [124] 

 

C. albicans (n=32) 125 μg/ml [125] Cinnamomum cassia 
Cinnamomum verum 

Cinnamaldehyde 

C. albicans  
C. tropicalis 

400 μg/ml 
500 μg/ml [126] 

Reacted with the proteins 
and interferes by a normal 

function, inhibited the cyto-

kinesis and cell division [93], 

inhibited the activity of 

transmembrane ATPase and 
caused membrane disruption 

[92].  

Allium sativum Allicin C. albicans 381 
C. albicans Nakamura 

C. albicans ATCC 14053 

C. albicans 3092 
C. tropicalis ATCC 750 

C. tropicalis 5483 

C. parapsilosis ATCC 22019 

C. parapsilosis 2707 

C. glabrata ATCC 2001 

C. glabrata 2737 
C. rugosa ATCC 10571 

C. rugosa 3114 

C. krusei ATCC 6258 

C. krusei 3109 

6.25 μg/ml 
3.13 μg/ml [127] 

MIC 50: 0.05 μg/ml,  

MIC 90: 0.1 μg/ml 
MIC 50: 0.39 μg/ml,  

MIC 90: 0.78μg/ml 

MIC 50: 0.1 μg/ml,  

MIC 90: 0.2 μg/ml 

MIC 50: 0.39 μg/ml,  

MIC 90: 0.78 μg/ml 
MIC 50: 0.1 μg/ml,  

MIC 90: 0.2 μg/ml 

MIC 50: 0.39 μg/ml,  

MIC 90: 1.56 μg /ml 

MIC 50: 0.1 μg/ml,  

MIC 90: 0.2 μg/ml 
MIC 50: 0.1 μg/ml,  

MIC 90: 0.2 μg/ml 

MIC 50: 0.1 μg/ml,  

MIC 90: 0.2 μg/ml 

MIC 50: 0.39 μg/ml,  

MIC 90: 3.13 μg /ml 
MIC 50: 0.1 μg/ml,  

MIC 90: 0.2 μg/ml 

MIC 50: 1.56 μg/ml,  

MIC 90: 3.13 μg/ml [128] 

 

Readily transported into the 
cell, changed the cell mor-

phology, interacted with the 

intracellular enzymes by 
binding with the free SH 

group [129]. Allicin inhibited 

the enzymes involved in 

acetyl-CoA synthesis, inhib-

ited the DNA replication and 

protein synthesis, reducing 
the RNA synthesis [85]. 

 

 

cymene [76] and is abundantly present in the Labiatae family 
plants including Corydothymus, Origanum, Satureja, Thym-
bra and Thymus [77, 78]. Antimicrobial activity of carvacrol 
is similar to thymol (as both resemble in shapes and interca-
late between the fatty acid chains) and causes structural 
changes in the membrane. It increases the fluidity and per-
meability of the membrane and changes the fatty acid com-
position, carvacrol interacts with the membrane, dissolves 
the phospholipid bilayer and occupies the space between the 
fatty acid chains, distortion of the physical structure cause 
destabilization and increases the permeability and fluidity of 
the membrane [79]. An increase in the permeability of the 
plasma membrane is confirmed by monitoring H+, K+, ATP 
and carboxyfluorescein efflux and the influx of nucleic acid 
dyes [68, 69]. The antifungal activity of carvacrol is similar 
to thymol, it shows an imbalance in Ca2+ and H+ homeosta-

sis. It affects the plasma membrane integrity and impaires 
the ergosterol biosynthesis in candida stains [80]. 

3.2.3. Allicin 

Allicin (diallyl thiosulfinate) is an oxygenated sulphur 
compound, first identified and isolated in the year 1944 as a 
compound responsible for antimicrobial activity [81]. Allicin 
is found mainly in fresh cloves of Allium sativum. It is 
formed when the broken clove facilitates contact between the 
enzyme alliin alkyl-sulfonate-lyase or allinase and alliin 
leading to the formation of allicin [82]. Allicin readily trans-
ported through the cell membrane into the cytoplasm where 
it binds with the free –SH group containing moiety (glu-
tathione, free cysteine, low molecular weight thiols and cys-
teine containing proteins) and inhibited the broad range of 
cellular targets. Allicin inhibited the thiol-protease papain, 
NADP+-dependent alcohol dehydrogenase and a NAD+-
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dependent alcohol dehydrogenase [83], all the enzymes can 
be reactivated by the dithiothreitol, glutathione and 2-
mercaptoethanol, confirming that the inhibition is reversible 
[83, 84]. Allicin reversibly inhibited the enzymes involved in 
acetyl-CoA synthesis in prokaryotes and eukaryotes [85]. 
Allicin partially inhibited the DNA replication in S. Typhi-
murium and RNA synthesis was reduced to 90% indicating 
RNA synthesis as the primary target of allicin [85]. Allicin is 
generally used with other chemotherapeutic agents as it ex-
hibits inhibitory effect on the RNA synthesis and makes the 
cell more prone to death. These studies collectively indicate 
that allicin is a non-specific inhibitor of enzymes, thereby 
reducing or hindering cell protection mechanisms induced by 
other antimicrobials. 

3.2.4. Eugenol 

Eugenol, a polyphenol (Hydroxyphenyl propene), is pre-
sent abundantly in plants belonging to the family Lamiaceae, 
Lauraceae, Myristicaceae and Myrtaceae [86]. It is a major 
constituent of Syzygium aromaticum. Its antimicrobial activ-
ity is associated with its ability to cross the cell membrane 
and interact with the internal protein. Various studies dis-
cussed the role of eugenol in non specific membrane perme-
abilization as it increases the efflux of K+ and ATP from the 
cell [87, 88]. Eugenol interferes with the fatty acid of cell 
membrane in E. coli, S. enterica, P. fluorescens, B. ther-
mosphacta and S. aureus further it interferes with the cellular 
morphology and disruption of cell membrane in C. albicans, 
S. typhi, S. agalactiae and S. cerevisiae [86-89]. Eugenol 
increases the intracellular production of ROS in C. albicans 
and S. aureus and inhibits the enzyme in E. aerogenes, B. 
subtilis, L. monocytogenes and in E. coli [86]. Eugenol also 
inhibits the activity of amylase, ATPase, histidine decar-
boxylase and protease [90, 91], ATPase inhibition is the 
most important activity, as it impairs the cell sensitivity, 
leading to cell death [92]. Previous studies also explained 
that hydroxyl group of eugenol binds with the internal pro-
teins and exhibits inhibitory effect at sub MIC. The antican-
didal mode of action needs more investigation, but little 
study explains that eugenol disturbs the cell proliferation and 
promotes cell death by altering the cell wall structures and 
by releasing cellular content of the cell [89].  

3.2.5. Cinnamaldehyde 

Cinnamaldehyde is a bioactive component present in the 
genus Cinnamomum. It is also produced by E. coli from its 
biosynthetic precursor and served as another source for the 
production of cinnamaldehyde. Aldehydes are reactive 
groups and are capable of cross link covalently with the 
other molecules. Cinnamaldehyde covalently linked with the 
DNA and proteins and interferes with the normal function of 
a cell, as like thymol and carvacrol it does not interfere with 
the cell membrane in gram-negative bacteria while inhibiting 
the energy generation process [68]. Cinnamaldehyde also 
changes the fatty acid composition in the membrane, alters 
the fluidity accompanied by the leakage of micromolecules, 
inhibition of ATP synthesis and inhibition of ATPase activ-
ity. Histidine decarboxylase is also inhibited by cin-
namaldeyde [91]. Cinnamaldehyde is reported to inhibit cy-
tokinesis in B. cereus [93]. Cinnamaldehyde binds with the 
FtsZ protein and inhibits the GTP dependents polymerization 
and prevents cell division [94]. In silico study of cinnamal-

dehyde reveals multiple mechanisms including disruption of 
carbohydrate, amino acid and lipid metabolism resulting in 
the inhibition of defenses mechanism against oxidative stress 
[30, 95]. The cited literature indicates that antimicrobial ac-
tion of cinnamaldehyde is governed by the various mecha-
nisms. The specific mechanism might not be associated with 
other pathogens due to the differences in membrane suscep-
tibilities. In fungi, cinnamaldehyde reported the inhibition of 
cell division followed by the inhibition of β -(1,3)-
glucansynthase and chitin synthase isozymes [96]. 

3.2.6. Alkyl Glycosides 

A series of alkyl glycosides and thio glycosides derived 
from mannose, glucose, galactose and cellobiose, which are 
the major component of Candida cell walls, were synthe-
sized and evaluated for their anti-Candidal activity. Only the 
mannosides and glucosides exhibited inhibitory activity. The 
inhibitory potential was determined by the aglycone chain 
length, only compounds with C-10 and C-12 aglycone chains 
(decyl α -D-mannoside, dodecyl α-D-mannoside, dodecyl 1-
thio-α-D-mannoside and dodecyl β -D-glucoside) found as 
efficient Candida inhibitors. The mode of action of the alkyl 
glycosides was not studied, but the author hypothesized that 
these are carbohydrate homologues of structural components 
of cell walls and can interfere with the structure and disrup-
tion of bilayer anticipated [97]. 

3.2.7. Phenolic Compounds 

Phenolic compounds are abundantly present in plants, 
and foods (cereal grains, fruits, legumes, and vegetables, tea 
and coffee). The most common are phenolic acids (cinnamic 
and benzoic acids, gallic acid, ferulic acid, sinapic acid, va-
nillic acid etc.), coumarins flavonoids, lignans and lignins, 
proanthocyanidins, stilbenes, and Tannins [98]. The anti-
Candidal properties of phenolic compounds believed to be 
the inactivation of enzyme production [99] and anti-biofilm 
effect [100]. These are derivatives of hydrocinnamic, hydro-
benzoic, phenylacetic, and phenylpropionic acids [101] and 
exist as the salts of amides, esters or glycosides. With over 
9000 natural antimicrobials identified [102], flavonoid fam-
ily, is the largest group of phenolic compounds that are in-
volved in the plant growth, reproduction and provide resis-
tance to plant pathogens and protect crops and seed from dis-
eases [103].  

Phenolic acids such as gallic and ferulic acids are known 
to affect the cell membrane of bacteria and change the sur-
face hydrophobicity and charge and cause cell leakage [104]. 
In fungi, gallic acid inhibits the ergosterol biosynthesis, re-
duce the activity of sterol 14α-demethylase P450 (CYP51) 
and squalene epoxidase [105], while caffeic acid and quinic 
acid is reported for cell leakage and to interfere with 1,3-β-
glucansynthase [106]. Isoquercetin [107], curcumin [108] 
and lariciresinol [109] damage the cell membrane. Catechin 
(flavan-3-ols), luteolin (flavone) and quercetin (flavonol) 
were reported for their antimicrobial activity but strong evi-
dence for their antifungal activity is not reported, one of the 
authors reported that flavonoid such as catechin, quercetin 
and epigallocatechin gallate did not possess antifungal activ-
ity of their own at concentration tested but they significantly 
increase the activity of fluconazole when tested against C. 
tropicalis [110].  
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4. ANTIFUNGAL RESISTANCE 

Despite advances in the chemotherapeutic regimen, fun-
gal infections cause severe morbidity and mortality in im-
munocompromised patients. The development of resistance 
in immunocompromised patients is a major concern. A better 
understanding of the mechanism of drug resistance is re-
quired for the development of a prompt and efficient regi-
men for the benefits of patients [129]. Widespread use of 
fluconazole and itraconazole in HIV infected patients with 
oral or esophageal candidiasis is thought to be responsible 
for azole resistance (infection with intrinsically resistant or-
ganisms and over expression of MDR and CDR genes en-
coding efflux pumps (but not ERG11) are the reason behind 
the development of resistance). Resistance to azoles was 
majorly seen with HIV immunocompromised patients, rarely 
with other types of candidiasis [130]. Several mechanisms of 
resistance to antifungal drug azoles have been identified and 
at least more than one mechanism of resistance can be func-
tional at a given time in a candida strain. Differences in the 
structures of azoles develop the cross resistance patterns 
against candida strains [131]. Although complete cross resis-
tance in triazoles was seen against C. glabrata only, but no 
such cross resistance pattern was observed with C. krusei 
[132]. Azoles work by inhibiting 14α demethylation of la-
nosterol thus interferes with the cell membrane. Resistance is 
mainly developed due to the activation of efflux pumps in 
candida species thus decreasing the drug concentration at the 
site of action. Upregulation of CDR1, CDR2, and MDR1 

transporter in C. albicans [133], PDH1 and CgCDR1 in C. 
glabrata and CdMDR1 and CdCDR1 in C. dubliniensis 

[134] has been associated with the activation of efflux pump 
and development of cross resistance against candida species, 
while upregulation of CDR gene confers resistance to all 
azoles. Alteration in the target site is another mechanism that 
develops resistance. Mutations in ERG11 [135] gene or af-
finity to ERG11p [136] gene encoding the lanosterol C14α-
demethylase enzyme also prevent the binding of the drug to 
the site. 

Some candida isolates upregulate the concentration of in-
tracellular target enzymes ERG11p as compared to suscepti-
ble strains with azoles and confer the development of resis-
tance to azoles. Up-regulation of enzymes can be achieved 
by an increase in transcription or gene amplification rate. 
However, enzyme up regulation contributes to a little resis-
tance in candida species [137]. Consistent exposure of can-
dida to azoles results in the loss of ergosterol from the mem-
brane and accumulation of 14α-methyl-3,6-diol, which leads 
to cell death. Mutations in the ERG3 gene by fungal strains 
inhibit the formation of 14α-methyl-3,6-diol and develops 
the resistance to azoles as well as polyenes [138]. 

The development of resistance to polyenes among can-
dida species is rare [139], but recently increasing MICs to 
polyenes were noted specifically with amphotericin B 
against C. glabrata and C. krusei isolates [140]. Intrinsic 
resistance was also observed with C. lusitaniae [141] and T. 
beigelii [142]. Filamantous fungi develop more resistance 
than yeast to polyenes, while resistance to Aspergillus spe-
cies is rare except A. terreus to amphotericin B [143] but 
susceptible to itraconazole and voriconazole. Low ergosterol 
content in the A. terreus is the reason behind the poor activ-

ity of amphotericin B. Changes in the ergosterol pathway 
due to mutation in the ERG3 gene lead to the accumulation 
of sterols and confer resistance in candida species [144]. 
Resistance to polyene also mediated through catalase activ-
ity, due to less susceptibility towards oxidative damage 
[145]. Some yeasts also develop resistance to flucytosine due 
to the changes in cytosine permease, cytosine deaminase and 
alteration in cellular uptake machinery, because of the recent 
and rapid development of resistance, clinicians have become 
aware and started using flucytosine in combination therapy 
along with amphotericin B. The development of resistance 
was also noted with echinocandins, a new class of drug 
against candida species. Echinocandins work by inhibiting 
β-1,3-D glucan which is an integral part of cell wall that 
maintains the rigidity and fluidity of the cell. The inhibition 
of the β-1,3-D glucan forms the defective cell wall leading to 
cell disruption. Although the mechanism of resistance to 
echinocandins is not so much investigated. But few authors 
suggested that the resistance is due to the mutations in the 
Fks1 gene mainly in conserved region of Ser645 position in 
β-1,3-D-glucan synthase complex [146]. Recently, resistance 
to echinocandins was observed in patients with candida in-
fections (due to C. albicans, C. glabrata, C. krusei, and C. 
parapsilosis) and resistance was developed during therapy 
and associated with treatment failure [147]. The mechanism 
of resistance reported in patients was other than Fks1 gene 
and hence it is clear that some other pathways are involved 
in the development of Resistance [148]. 

CONCLUSION 

This article reviewed natural anticandidal drugs of plant 
origin. Plants reviewed potent activity against fungal strains 
and components responsible for potent anticandidal activity 
in plants are also discussed along with their various mecha-
nisms of action. Few plant molecules showing mechanism of 
action believed that they can be active on resistant strains. 
Further studies and information are warranted to explore the 
mechanism of action of phytomolecules and confirm the 
safety, so as to reach the conclusion that plant components, 
individually or in combination can be used to combat drug 
resistance. 
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